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Answer: While it is true that some people are better at math than 
others—just like some are better than others at writing or building 
cabinets or anything else—it is also true that the vast majority of 
people are fully capable of learning K–12 mathematics. Learning 
mathematics does not come as naturally as learning to speak, but 
our brains do have the necessary equipment. So, learning math is 
somewhat like learning to read: we can do it, but it takes time and 
effort, and requires mastering increasingly complex skills and con-
tent. Just about everyone will get to the point where they can read 
a serious newspaper, and just about everyone will get to the point 
where they can do high school–level algebra and geometry—even 
if not everyone wants to reach the point of comprehending James 
Joyce’s Ulysses or solving partial differential equations.

*  *  *

“I’m just no good at math” is said so often—and with 
so little embarrassment (at least in the United 
States)—that it seems as though our society has 
accepted the “fact” that math is not for most of us. 

The problem is that this notion is a myth. Virtually everyone is 
fully capable of learning the numeracy content and skills required 

How does the mind work—and especially how does it learn? Teach-
ers’ instructional decisions are based on a mix of theories learned 
in teacher education, trial and error, craft knowledge, and gut 
instinct. Such knowledge often serves us well, but is there anything 
sturdier to rely on?

Cognitive science is an interdisciplinary field of researchers from 
psychology, neuroscience, linguistics, philosophy, computer science, 
and anthropology who seek to understand the mind. In this regular 
American Educator column, we consider findings from this field 
that are strong and clear enough to merit classroom application.

By Daniel T. Willingham

Question: “I’m just no good at math.” Every year, I hear this from 
at least a few of my students. In fact, I’ve heard it from plenty of 
adults too. Is there any truth to this notion that some people just 
can’t learn mathematics?

Daniel T. Willingham is a professor of cognitive psychology at the Univer-
sity of Virginia. His most recent book, Why Don’t Students Like School?, 
is designed to help teachers apply research on the mind to the classroom 
setting. For his articles on education, go to www.danielwillingham.com. 
Readers can pose specific questions to “Ask the Cognitive Scientist,” Amer-
ican Educator, 555 New Jersey Ave. N.W., Washington, DC 20001, or to 
amered@aft.org. Future columns will try to address readers’ questions.

ASK THE COGNITIVE SCIENTIST

Is It True That Some  
People Just Can’t Do Math?
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for good citizenship: an understanding of arithmetic procedures, 
algebra, geometry, and probability deep enough to allow applica-
tion to problems in our daily lives.

What Does Nature Provide?
Humans have a clear proclivity to learn some types of information. 
The most notable example is language; given normal linguistic 
input, virtually all children learn their native language without 
effort or explicit instruction. In fact, we seem to have some innate 
knowledge of grammatical structures; our minds are so biased to 
learn language, we will improve on imperfect linguistic input. Deaf 
children exposed only to crude signs have been observed modify-
ing what they see to give it more linguistic structure.1 Is something 
comparable true of mathematics? Just how “naturally” do children 
learn mathematics? Two important findings from the last 20 years 
are relevant: (1) humans are born with the ability to appreciate 
the concept of number, and (2) humans seem to be born with a 
sense that numbers and space are related. Let’s discuss each of 
these briefly.

First, humans are born with two ways to appreciate number. 
One is an approximate number sense. This sense cannot support 
precise enumeration, but it does enable us to compare two sets 
of objects and immediately know which set is larger. For exam-
ple, if you saw 50 beans scattered on one table and 100 beans on 
another table, you would know at a glance, without counting, 
which table had more beans on it. Carefully conducted labora-
tory tests confirm that people can use their natural sense of 
numerosity to make these judgments, and are not making 
judgments by the area taken up by the beans, the density, 
or other cues.2

Although infants cannot give verbal replies, we know 
that they can make these judgments as well. Infants look at 
a novel object until they grow bored with it. If a new object 
is presented, they will look at it; but if the same object is pre-
sented, they will look at it for a much shorter time. By measur-
ing looking time, an experimenter can determine whether the 
infant perceives a difference between the first and second 
objects. Using this methodology, studies have determined that 
infants have this approximate number sense,3 although it is not 
as fine-grained as that seen in older children or adults. Six-month-
olds can appreciate differences in numerosity in a ratio of 2:1 or 
larger, whereas adults can appreciate 8:7 (e.g., without counting, 
infants can tell that there is a difference between a group of four 
dots and a group of eight dots, while adults can tell that there is a 
difference between a group of seven dots and a group of eight 
dots). There is good evidence that nonhuman primates4 and rats5 

also have approximate number sense.
The other way in which humans are born with an appreciation 

of number is that we have a way of representing precise values in 
our minds, but only up to a value of three. For example, if 10-month-
old infants watch as one cracker is put into one bucket and then 
two crackers are put into another bucket, they crawl to the bucket 
with two crackers. They also choose three crackers over two, but 
fail when comparing two versus four.6 A comparable experiment 
testing untrained rhesus monkeys showed similar performance; 
in fact, they performed slightly better than human infants, with an 
ability to mentally represent quantities of four.7 Adults can perceive 
numerosities of up to four more or less instantly and virtually error 

free. Errors and response times increase sharply as the number of 
objects increases beyond four.8

The other important finding from the last 20 years of research 
is that humans seem to be born with a sense that numbers and 
space are related. There is a variety of evidence for this relation-
ship; we’ll review just a handful of it. First, many cultures make 
use of a spatial representation of numbers, for example, via a 
number line. Second, numbers and space are represented in 
overlapping areas of the brain. Damage to a particular region of 
the brain (the intraparietal sulcus, which is on the upper part of 
the brain, toward the back) leads to difficulties with directing 
spatial attention and difficulties with processing numbers.9 In 
one of the more interesting demonstrations of the overlap of 

mathematics and space, a group of researchers wrote a computer 
program that analyzed brain imaging data to classify whether 
subjects were moving their eyes rightward or leftward during a 
brain scan.10 The researchers then applied the classification pro-
gram to brain data from subjects who performed two utterly dif-
ferent tasks: addition and subtraction. The theory was that, given 
the relationship between numbers and space, subtraction is like 
leftward eye movements because it decreases number size, and 
addition is like rightward eye movements because it increases 
number size. Remarkably, the computer program (created with 
just the brain data from eye movements) was successful 70 per-
cent of the time in predicting whether subjects were adding or 
subtracting numbers.

Still, how we express our inborn sense that numbers and space 
are related is clearly affected by culture, as revealed in the follow-
ing experiment. Subjects are seated in front of a computer screen 
and have two buttons. On each trial, a digit appears on the screen, 
and subjects are told to push the button on the left if the digit is 
even and the button on the right if it is odd. When an even digit 
appears, subjects are faster to push the left button for small num-

Virtually everyone is fully capable of  
understanding arithmetic procedures,  
algebra, geometry, and probability deeply 
enough to allow application to problems  
in our daily lives. 
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bers (two or four) than larger numbers (six or eight). When an odd 
digit appears, they are faster to push the right button for larger 
numbers (seven or nine) than smaller ones (one or three). In other 
words, small numbers “belong” on the left side, and large num-
bers “belong” on the right. This widely replicated effect is not 
observed until children are about 9 years old,11 and it is reversed 
in Iranian adults who read from right to left.12 Thus, it seems quite 
likely that, even if it is natural to associate space with number, the 
manner in which this happens is learned, and is specific to cul-
tural convention.

The ability to enumerate precisely beyond about four depends 
on another, culture-specific system that is learned, and that is 
supported by language. In short, we learn to count. One of the 
most dramatic sources of evidence to help researchers understand 

counting as a culture-specific system comes from tests of the 
Mundurucú, an Amazonian indigen group. Their language has 
words for numbers only up to five. Beyond five, they simply refer 
to “many.” They can use their innate approximate-number system 
to estimate and to roughly perform addition, but they cannot 
perform precise arithmetic with numbers larger than five.13

The Mundurucú have a sense of numbers corresponding to 
space, but this correspondence is not linear. That is, unlike on a 
ruler or number line, each increase of one number is not matched 
by a uniform increase in space. If asked to point to a location on 
a line to indicate where 1 to 10 dots should be represented, the 
Mundurucú will place the quantities 1 through 5 relatively spread 
out, and the quantities 6 through 10 more crowded together: the 
difference between 2 and 3 will be bigger than the difference 
between 7 and 8.* American adults, in contrast, do have a linear 
sense of number and space: they space the quantities 1 through 
10 equally, as on a number line. But, American adults’ linear sense 
is limited to situations where they are counting. When asked to 
perform the same task with quantities of dots between 10 and 100, 
Mundurucú and American participants perform comparably. 

They both allocate more space on the line to smaller quantities 
and less space to larger quantities, with crowding increasing as 
they get closer to 100.14

So it appears that humans are born with a sense of number as 
spatial, but the space is not linear. Indeed, until they have had suf-
ficient experience (mostly in school) with the linear one-to-one 
correspondence between number and space that characterizes 
the number line, American children perform the place-the-dots-
on-the-line task as the Mundurucú do. While American first-
graders crowd higher numbers together, third-graders space higher 
numbers more evenly, and second-graders will do one or the other, 
depending on the task, the day of testing, and other incidental 
factors.15

So what comes naturally to children in mathematics? They 
have a natural number sense that allows them to under-
stand and manipulate very small quantities with preci-
sion, and much larger quantities in approximation. Those 

abilities are, of course, a far cry from the abilities teachers hope to 
develop in their students, but they are the base upon which teach-
ers must build. Just as reading does not come naturally, but uses 
visual and language representations that are natural,16 it’s a good 
bet that mathematics uses mental representations that are natural, 
but that did not evolve to support mathematics in the way our 
advanced society now needs them to.17 For educators, that means 
we should not expect students will learn mathematics with ease. 
Rather, we should expect that mathematical proficiency will 
require careful cultivation and will develop slowly. At the same 
time, we should keep in mind that students are born with the abil-
ity to learn math, and we should not let students give up by con-

cluding that they’re just no good at math.

What Do Students Need  
to Be Successful in Math?

In its recent report,† the National Mathematics Advisory Panel 
argued that learning mathematics requires three types of 

knowledge: factual, procedural, and conceptual. Let’s take a close 
look at each.

Factual knowledge refers to having ready in memory the answers 
to a relatively small set of problems of addition, subtraction, mul-
tiplication, and division.‡ The answers must be well learned so that 
when a simple arithmetic problem is encountered (e.g., 2 + 2), the 
answer is not calculated but simply retrieved from memory. More-
over, retrieval must be automatic (i.e., rapid and virtually attention 
free). This automatic retrieval of basic math facts is critical to solv-
ing complex problems because complex problems have simpler 
problems embedded in them. For example, long division problems 
have simpler subtraction problems embedded in them. Students 
who automatically retrieve the answers to the simple subtraction 
problems keep their working memory (i.e., the mental “space” in 
which thought occurs) free to focus on the bigger long division 
problem.18 The less working memory a student must devote to the 
subtraction subproblems, the more likely that student is to solve 

Automatic retrieval of basic math facts is 
critical to solving complex problems because 
complex problems have simpler problems 
embedded in them.

†The National Mathematics Advisory Panel’s report is available at  
www.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf.

*The relationship between number and space is actually logarithmic.

‡Addition and multiplication facts are easier to memorize because they are 
commutative; that is, 3 + 4 is the same as 4 + 3, and the same is true for 3 x 4 and  
4 x 3. That is not the case for subtraction and division. Even well-educated adults 
from countries with excellent math education will sometimes calculate subtraction 
and division facts, rather than retrieve them from memory.
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the long division problem.
This interpretation of the importance of memorizing math facts 

is supported by several sources of evidence. First, it is clear that 
before they are learned to automaticity, calculating simple arith-
metic facts does indeed require working memory. With enough 
practice, however, the answers can be pulled from memory (rather 
than calculated), thereby incurring virtually no cost to working 
memory.19 Second, students who do not have math facts commit-
ted to memory must instead calculate the answers, and calcula-
tion is more subject to error than memory retrieval.20 Third, 
knowledge of math facts is associated with better performance on 
more complex math tasks.21 Fourth, when children have difficulty 
learning arithmetic, it is often due, in part, to difficulty in learning 
or retrieving basic math facts.22 One would expect that interven-
tions to improve automatic recall of math facts would also improve 
proficiency in more complex mathematics. Evidence on this point 
is positive23 but limited, perhaps because automatizing factual 
knowledge poses a more persistent problem than difficulties 
related to learning mathematics procedures.24

What of procedural and conceptual knowledge, also deemed 
necessary by the National Mathematics Advisory Panel? A proce-
dure is a sequence of steps by which a frequently encountered 
problem may be solved. For example, many children learn a rou-
tine of “borrow and regroup” for multidigit subtraction problems. 
Conceptual knowledge refers to an understanding of meaning; 
knowing that multiplying two negative numbers yields a positive 
result is not the same thing as understanding why it is true.

The “math wars” that have been waged among math educators 
and researchers in the United States have largely revolved around 
the procedures-versus-concepts axis and, like most heated 
debates, have included a fair amount of caricature. At the 
extremes, progressives claim that traditionalists would be happy 
for students to execute procedures without understanding what 
they are doing, and traditionalists claim that progressives care 
only that students understand concepts and are unconcerned 
about whether they can actually solve math problems. Most 
observers of the math wars understand that, even though some 
children with conceptual understanding may invent appropriate 
calculation procedures,25 this process of invention cannot be 
relied on for all children.26 Then too, knowledge of procedures is 
no guarantee of conceptual understanding; for example, many 
children can execute a procedure to divide fractions without 
understanding why the procedure works.27 Most observers agree 
that knowledge of procedures and concepts is desirable.28

Somewhat more controversial is the relative emphasis that 
should be given to these two types of knowledge, and the order in 
which students should learn them. Perhaps with sufficient prac-
tice and automaticity of algorithms, students will, with just a little 
support, gain a conceptual understanding of the procedures they 
have been executing. Or perhaps with a solid conceptual under-
standing, the procedures necessary to solve a problem will seem 
self-evident.

There is some evidence to support both views. Conceptual 
knowledge sometimes seems to precede procedural knowledge 
or to influence its development.29 Then too, procedural knowledge 
can precede conceptual knowledge. For example, children can 
often count successfully before they understand all of counting’s 
properties, such as the irrelevance of order.30

A third point of view (and today perhaps the most commonly 
accepted) is that for most topics, it does not make sense to teach 
concepts first or to teach procedures first; both should be taught 
in concert. As students incrementally gain knowledge and under-
standing of one, that knowledge supports comprehension of the 
other.31 Indeed, this stance seems like common sense. Since nei-
ther procedures nor concepts arise quickly and reliably in most 
students’ minds without significant prompting, why wouldn’t one 
teach them in concert?

The Problem of Conceptual Knowledge
How well are American students doing on these three types of 
knowledge? The National Mathematics Advisory Panel concluded 
that American students have reasonable, though incomplete, fac-

tual and procedural knowledge, and poor conceptual knowledge. 
These conclusions seem sound, but they ought to be considered 
tentative because there are not up-to-date, comprehensive assess-
ments designed to provide this sort of data. Still, studies from the 
last 20 years indicate that American students, even college stu-
dents, have not completely automatized fact retrieval32 or achieved 
fluency with procedures.33

More troubling is American students’ lack of conceptual 
understanding. Several studies have found that many students 
don’t fully understand the base-10 number system.34 A colleague 
recently brought this to my attention with a vivid anecdote. She 
mentioned that one of her students (a freshman at a competitive 
university) argued that 0.015 was a larger number than 0.05 
because “15 is more than 5.” The student could not be persuaded 
otherwise.

Another common conceptual problem is understanding that 
an equal sign ( = ) refers to equality—that is, mathematical equiva-
lence. By some estimates, as few as 25 percent of American sixth-
graders have a deep understanding of this concept.35 Students 
often think it signifies “put the answer here.” It has been argued 
that student textbooks and textbooks for future mathematics 
teachers do not make the meaning of the equal sign clear enough, 

For most topics, it does not make sense to 
teach concepts first or to teach procedures 
first; both should be taught in concert.  
Gaining knowledge and understanding of 

one supports comprehension  
of the other.
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nor do they offer examples of its use that would help readers 
understand the meaning.36

The cost of poor conceptual understanding should be clear. If 
you think an equal sign means “put the answer here,” you’ll be 
confused the first time you see an equation with terms on both 
sides of the equal sign. When a student first encounters factoring, 
he ought to see how it relates to division, but he probably won’t 
without a deep conceptual understanding of division. (And, just 
to emphasize that factual, procedural, and conceptual knowledge 
all go together, he also will be slowed in factoring if he hasn’t 
memorized the multiplication table.)

Unfortunately, of the three varieties of knowledge that students 
need, conceptual knowledge is the most difficult to acquire. It’s 
difficult because knowledge is never acquired de novo; a teacher 

cannot pour concepts directly into students’ heads. Rather, new 
concepts must build upon something that students already know. 
That’s why examples are so useful when introducing a new con-
cept.37 Indeed, when someone provides an abstract definition 
(e.g., “The standard deviation is a measure of the dispersion of a 
distribution.”), we usually ask for an example (such as, “Two 
groups of people might have the same average height, but one 
group has many tall and many short people, and thus has a large 
standard deviation, whereas the other group mostly has people 
right around the average, and thus has a small standard 
deviation.”).

This is also why conceptual knowledge is so important as stu-
dents advance. Learning new concepts depends on what you 
already know, and as students advance, new concepts will increas-
ingly depend on old conceptual knowledge. For example, under-
standing algebraic equations depends on the right conceptual 
understanding of the equal sign. If students fail to gain conceptual 
understanding, it will become harder and harder to catch up, as 
new conceptual knowledge depends on the old. Students will 
become more and more likely to simply memorize algorithms and 

apply them without understanding.
So how can students learn concepts? In the United States, 

much is made of the use of manipulatives to help children under-
stand abstract concepts in mathematics, but of course manipula-
tives themselves are abstract (the student is to treat them as a 
symbol for something else38) and manipulatives don’t always help 
learning—they sometimes impede it.39 This is most likely when 
manipulatives are so visually interesting that they distract from 
their purpose, or when their relationship to the concept to be 
represented is obscure.

Manipulatives seem helpful because they are concrete. To 
illustrate the idea of a fraction, one might divide a cookie in two 
for the purpose of sharing it with a student. But the concreteness 
of this example is likely less important than its familiarity.40 Sup-
pose I tore a book into two pieces, and said “See? Now there are 
two equal pieces. Each one is half a book.” That example is con-
crete, but less effective because it is unfamiliar; the student has 
no experience with divided books, and the purpose of sharing is 
also missing. Concreteness is not a magical property that allows 
teachers to pour content into students’ minds. It’s familiarity that 
helps, because it allows the teacher to prompt students to think 
in new ways about things they already know.

Familiarity is not the only ingredient necessary for successful 
examples. Students are more likely to understand abstract ideas 
when they see many examples,41 so that they can learn which 
properties are important to the concept (division of the object into 
equal parts) and which properties are incidental (that the result-
ing parts can be shared). Crucially, students frequently fail to 
understand the concept if they are not explicitly told to look for 
the commonalities among examples, or are not given hints as to 
what the commonalities are.42

As concepts become more complex, familiar examples from 
the students’ lives become harder to generate, and teachers may 
use analogies more often; a familiar situation is offered as analo-
gous to the concept, not as an example of the concept. Thus, a 
teacher might tell students that algebraic equations may be 
thought of like a balance scale: the two sides are equivalent, and 
you maintain their equivalence so long as you perform the same 
operation on both sides. Laboratory studies have revealed several 
principles that make analogies especially effective: familiarity 
(e.g., students know what a balance scale is), vividness (actually 
having the balance scale for students to see), making the align-
ment plain (e.g., writing the two sides of the equation over the two 
sides of a drawing of a balance scale), and continuing to reinforce 
the analogy (e.g., by referring to the scale at appropriate times as 
the equation is solved). Some data indicate that math teachers in 
Hong Kong and Japan (where mathematics achievement is con-
sistently high) are especially effective in using analogies according 
to these principles.43

What Does All This Mean for Teaching? 
1. Think carefully about how to cultivate conceptual knowledge, 
and find an analogy that can be used across topics. Of the three 
types of knowledge mentioned, conceptual knowledge is the most 
difficult for students to learn. Seeing and hearing many different 
examples of a concept are useful for abstracting the core idea and 
learning which features of the examples are irrelevant. It is also 
useful for students to learn a single analogy to which they return 

Manipulatives don’t always help learning—
they sometimes impede it. It’s familiarity that 
helps, because it allows students to think in 
new ways about things they already know. 
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again and again. Using the same analogy across topics makes it 
much clearer to students how those topics relate to one another.

Drawing connections among mathematical topics deepens 
conceptual knowledge, but it is one of the desired outcomes that 
is seldom met in the United States. In contrast, drawing connec-
tions by building systematically upon simple models is the cen-
terpiece of the Singapore method,44 which appears to be quite 
successful given the high performance of Singapore’s students. 
Teachers in the United States may not be free to adopt a curricu-
lum wholesale, but the cognitive advantages of the model 
approach (see box below) are impressive.

2. In cultivating greater conceptual knowledge, don’t sacrifice pro-
cedural or factual knowledge. Procedural or factual knowledge 
without conceptual knowledge is shallow and is unlikely to trans-
fer to new contexts, but conceptual knowledge without procedural 
or factual knowledge is ineffectual. Tie conceptual knowledge to 
procedures that students are learning so that the “how” has a 
meaningful “why” associated with it; one will reinforce the other.† 

Increased conceptual knowledge may help the average American 
student move from bare competence with facts and procedures 
to the automaticity needed to be a good problem solver. But if we 
reduce work on facts and procedures, the result is likely to be 
disastrous.

3. In teaching procedural and factual knowledge, ensure that stu-
dents get to automaticity. Explain to students that automaticity 
with procedures and facts is important because it frees their minds 
to think about concepts. For automaticity with procedural knowl-
edge, ensure that students are fluent with the standard algorithms. 
This requires some memorization and ample practice. For factual 
knowledge, ensure that students have memorized basic math 
facts, such as the multiplication table up to 12 x 12.

4. Choose a curriculum that supports conceptual knowledge. If 
conceptual knowledge is indeed so difficult to learn, it makes 
sense to (1) study just a few concepts each year, but study them in 
depth so there is sufficient time to comprehend one concept 
before the next one is introduced, and (2) sequence topics so, as 
much as is possible, the mental distance between concepts is 
small and the previously learned concept will help in learning 
each new one. These two sensible precepts (along with a third, 
rigor) are exactly those that William Schmidt has advocated, based 
on his analysis of the curricula of countries that excel in 
mathematics.‡

5. Don’t let it pass when a student says “I’m just no good at math.” 
We hear it a lot, but it’s very seldom true. It may be true that the 
student finds math more difficult than other subjects, but with 
some persistence and hard work, the student can learn math—
and as he learns more, it will get easier. By attributing the diffi-

(Continued on page 39)

Increased conceptual knowledge may help 
students move from bare competence with 
facts and procedures to the automaticity 
they need to be good problem solvers.

The Singapore Model Method uses graphical models to help 
students understand mathematical concepts. These models 
are introduced in early grades starting with real objects, but 
quickly transition to bars, as shown in the two examples 
below. Both models can represent the same function, in this 
case addition.

1. The part-whole model emphasizes that two parts of a bar, 
such as the 5 sections and 3 sections shown here, can also be 
considered together as a whole with 8 sections.

!––––––––––8–––––––––––"

!––––––5––––––"!–––3–––"

2. The comparison model emphasizes comparison of two 
bars. For example, students might use this model to represent 
the following problem:*  

Betty saved $121. She saved $63 less than Meilin. How much 
did Meilin save?

     

?

$ 121

$ 63
!––––-––––"

  
In higher grades, these bars easily transition to number lines. 
The two models can be used for many of the fundamental 
concepts through algebra: the four operations, fractions, 
ratios, and percentages.

*Kho Tek Hong, Yeo Shu Mei, and James Lim, The Singapore Model Method 
for Learning Mathematics (Singapore: PanPac, 2009), 20.

†For an in-depth look at how to teach so that conceptual, factual, and procedural 
knowledge reinforce each other, see “Basic Skills versus Conceptual Understanding: A 
Bogus Dichotomy in Mathematics Education” by Hung-Hsi Wu in the Fall 1999 issue 
of American Educator, available online at www.aft.org/pubs-reports/american_ 
educator/fall99/wu.pdf.

‡To learn more about William Schmidt’s research and the need for focus, coherence, 
and rigor in mathematics curricula, see “What’s Missing from Math Standards?” in 
the Spring 2008 issue of American Educator, available online at www.aft.org/
pubs-reports/american_educator/issues/spring2008/schmidt.htm.
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culty to an unchanging quality within 
himself, the student is saying that he’s 
powerless to succeed.  ☐
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